
BIRZEIT UNIVERSITY

THESIS REPORT

Next Release Optimization Problem Using

Multi-Objective Harris Hawks Optimization

Algorithm

Author:

Fadi Khalil (1175206)

Supervisor:

Dr. Majdi Mafarja

A thesis submitted in fulfillment of the requirements

for the degree of Master of Software Engineering

Birzeit University, Palestine

August 4, 2021

https://birzeit.edu

Approved by the thesis committee:

Dr. Majdi Mafarja, Birzeit University

Dr. Ahmed Abusnaina, Birzeit University

Dr. Sobhi Ahmed, Birzeit University

Date approved: 7/7/2021

2

Declaration of Authorship

I, Fadi Khalil , declare that this thesis titled, “Next Release Optimiza-

tion Problem Using Multi-Objective Harris Hawks Optimization Algo-

rithm” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a

master degree at Birzeit University.

• Where any part of this thesis has previously been submitted for a

degree or any other qualification at this University or any other in-

stitution, this has been clearly stated.

• Where I have consulted the published work of others, this is always

clearly attributed.

• Where I have quoted from the work of others, the source is always

given. With the exception of such quotations, this thesis is entirely

my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with oth-

ers, I have made clear exactly what was done by others and what I

have contributed myself.

Signed: Fadi Khalil

Date: 25/6/2021

3

Acknowledgements
First of all I would thank Allah for getting this work done and my

thesis advisor Dr. Majdi Mafarja from the Department of Computer Sci-

ence / faculty of Engineering and Technology at Birzeit University. Dr.

Majdi was always there when I needed him, whether I ran into a problem

or needed a question Dr. Majdi was ready with the curing answer and

advice.

This work couldn’t be achieved without the support of my beloved

wife and her encouragement throughout my years of study, nights and

nights she was able to absorb all the nervousness I went through.

I dedicate this success to my children and whoever is coming down

the road, to my parents, brothers, sister and family, to all of my friends.

This accomplishment would not have been possible without them. Thank

you.

Author

Fadi Khalil

4

2

Abstract
Companies that maintain large and complex software systems are

usually facing Next Release Problem (NRP) in determining what require-

ments and features should be implemented in the next release [4].

Usually, there is a budget for software development, and there is a lot

of requirements to be implemented. In this dilemma, the companies must

satisfy customers’ requests without exceeding the development budget

limit.

In such a problem, requirement selection depends on the value, in-

tegrity, and dependencies between requirements. In this thesis, a new

approach is proposed to tackle NRP. One of the recent Swarm Intelli-

gent (SI) Meta Heuristics algorithms is used to tackle NRP, which is "Har-

ris Hawks Optimization (HHO)" [24]. This algorithm is converted from

a Single-Objective to Multi-Objective using two fitness functions, then

used to find the best set of requirements that achieve customers’ satisfac-

tion within the development budget.

Different datasets from related NRP literature are used to assess the

proposed approach’s performance. It contains classic and real instances.

Classic datasets were generated in labs to be used for experiments. The

realistic datasets were derived from a real open source project. Both types

include requirements cost, requirements requested by each customer, and

the profit will be gained for implementing customer requirements.

5

In this work, three for the best wrapper meta-heuristics algorithms

(NSGA-II, MOCell and MOCHC) are compared with the proposed MO-

HHO algorithm using different datasets, each experiment is repeated

multiple times to avoid getting good results by chance. The result showed

that MOHHO outperforms NSGA-II, MOCell and MOCHC based on com-

paring Hypervolume values.

 الملخص

أنظمة برمجيات كبيرة ومعقدة تقوم بتطوير عادة ما تواجه الشركات التي

في تحديد المتطلبات والميزات التي يجب الإصدار التالي محتويات تحديد مشكلة

هناك ميزانية لتطوير البرامج ، في معظم الحالات يكونتنفيذها في الإصدار التالي.

 وهناك الكثير من المتطلبات الواجب تنفيذها.

يجب على الشركات تلبية طلبات العملاء دون تجاوز حد مثل هذه المعضلةفي

 الربحية يعتمد اختيار المتطلبات على القيمة وفي هذه الحالةميزانية التطوير.

وحة ، تم اقتراح نهج لبات. في هذه الأطربين المتط والارتباطات والتكلفة التشغيلية

إحدى استراتيجية ماطردة الصقور للفريسة وهي تسُتخدم. جديد لمعالجة هذه المشكلة

يتم تحويل هذه الخوارزمية من هدف واحد ذكاء القطيع في حل المشكلة. خوارزميات

والفائدة العائدة من معادلتين لحساب تكلفة التطوير باستخدام ة الاهدافإلى متعدد

ثم تطوير كل واحد من المتطلبات المطلوب اضافتها من الاصدار التالي من البرنامج،

رضا العملاء يتم استخدامها للعثور على أفضل مجموعة من المتطلبات التي تحقق

 ضمن ميزانية التطوير.

 داميتم استخللمقارنة بين الطريقة الجديدة والدراسات السابقة ذات الصلة

لتقييم أداء النهج المقترح. صلةذات بيانات مختلفة من دراسات سابقة مجموعة

 مجموعةحقيقية. تم إنشاء أخرى و بيانات غير حقيقيةعلى تحتوي هذه البيانات

 ها في التجارب. تم اشتقاق مجموعةفي المختبرات لاستخدام الغير حقيقيةالبيانات

فتوح المصدر. يتضمن كلا النوعين تكلفة البيانات الواقعية من مشروع حقيقي م

 .لتنفيذ متطلبات العميل يالربحوالعائد المتطلبات والمتطلبات التي يطلبها كل عميل ،

أفضل خوارزميات الاستدلال مل تمت مقارنة ثلاث خوارزميات من في هذا الع

المقترحة MOHHO مع خوارزمية MOCHC و MOCell و NSGA-II الفوقي

بيانات مختلفة ، يتم تكرار كل تجربة عدة مرات لتجنب الحصول موعةباستخدام مج

 تتفوق MOHHO الخوارزمية الجديدة على نتائج جيدة بالصدفة. أظهرت النتيجة أن

بناءً على عدة مؤشرات لمراقبة MOCHC و MOCell و NSGA-II في الأداء على

 أداء الخوارزميات.

7

Contents

Acknowledgements 3

Abstract 4

1 Introduction 13

1.1 Motivation . 17

1.2 Problem Statement . 18

1.3 Research Objectives . 19

1.4 Proposal Organization . 19

2 Background 21

2.1 The Next Release Problem 21

2.2 Metaheuristics algorithms 22

2.3 Multi Objective Algorithms 25

2.4 Harris Hawks Optimization 26

2.4.1 Exploration phase 28

2.4.2 Transition from exploration to exploitation 29

2.4.3 Exploitation phase 30

Soft besiege . 31

8

Hard besiege . 31

Soft besiege with progressive rapid dives 32

Hard besiege with progressive rapid dives 34

2.4.4 Pseudocode of HHO 36

3 Related Works 37

4 Research Methodology 45

4.1 Used Data Sets . 46

4.2 The Proposed Approach . 49

4.2.1 Convert HHO from Continuous to Discrete 50

4.2.2 Cost Fitness Function 50

4.2.3 Profit Fitness Function 51

4.2.4 Comparing and Contrasting Solutions 51

4.2.5 MOHHO Implementation 53

4.3 Used Algorithms . 56

4.3.1 NSGA-II . 56

4.3.2 MOCell . 57

4.3.3 MOCHC . 59

4.4 Quality of the Solutions Obtained 60

4.4.1 Hypervolume . 60

4.4.2 Statistical Analysis 61

Friedman Statistical Analysis 61

Wilcoxon Statistical Analysis 62

9

5 Results 63

5.1 Experimental Setup . 63

5.2 Experimental Results . 65

5.2.1 HV Quality Indicator Median 65

5.2.2 Friedman Statistical 66

5.2.3 Wilcoxon Statistical 67

5.2.4 Box Plots . 68

5.2.5 Convergence Curve 70

6 Conclusion and Future Work 75

6.1 Conclusion . 75

6.2 Future Work . 76

10

List of Figures

2.1 Metaheuristic Techniques [24] 23

2.2 dominated and non-dominated solutions with the Pareto

front [9] . 26

2.3 Optimal Non-dominated Solutions front [9] 27

2.4 HHO phases [24] . 27

2.5 Behavior of rabbit escaping energy during two runs and

500 iterations [24] . 30

2.6 Hard besiege example [24] 32

2.7 Soft besiege with progressive rapid dives[24] 34

2.8 The process in 2D space [24] 35

2.9 The process in 3D space [24] 35

2.10 Hard besiege with progressive rapid dives example in 2D

and 3D . 35

2.11 HHO algorithm pseudocode [24] 36

4.1 Requirements Dependency Sample [46] 46

4.2 Pseudo-code of MOHHO algorithm 54

4.3 MOHHO . 55

11

4.4 NSGA-II Code . 57

4.5 MOCell [35] . 58

4.6 MOCEllCode . 59

4.7 CHCCode . 60

4.8 Hypervolume . 61

5.1 Wilcoxon Statistical Test . 67

5.2 Box Plots group1 . 69

5.3 Box Plots group2 . 70

5.4 Convergence Curve nrp-e1 71

5.5 Convergence Curve nrp-e2 71

5.6 Convergence Curve nrp-g1 72

5.7 Convergence Curve nrp-g2 72

5.8 Convergence Curve nrp-m1 73

5.9 Convergence Curve nrp-m2 73

5.10 Convergence Curve nrp-1 74

5.11 Convergence Curve nrp-2 74

12

List of Tables

4.1 Classic Data Set Instances Characteristics 47

4.2 Realistic Data Set Instances Characteristics 48

4.3 Dataset Instances Size Categories 48

4.4 Chose Data Set Instances . 49

5.1 MOHHO Parameters . 64

5.2 HV. Median and Interquartile Range 65

5.3 Average ranking of the algorithms 67

13

Chapter 1

Introduction

Software engineering is defined as a process of producing software ap-

plications that start by analyzing the user requirements, then build the

required design, and the last step is testing the implemented software to

make sure that it satisfies the requirements [25].

In engineering, a requirement is a document that describes what the

system should be or do. It also describes the attribute, capability, charac-

teristic, and quality of the system in order to produce a value and utility

to the user [37].

Nowadays, the software market became very large; also the customers

have many requests, this increase the need for an adaptive methodology

that help in meeting the need of customers and receive feedback on deliv-

ered products [32]. This model of development is called an incremental

model. This model makes use of delivering a small set of requirements;

each deliverable is called a release. This development model becomes

more popular because of Agile manifest and methodologies [43].

14

One of the common methods is used to manage the software engi-

neering process is Agile methodology. It comes to boost the development

speed while increasing the quality of the development process [48].

The software development companies usually have many feature re-

quests from the customers, and almost there is a limited capacity to im-

plement these requests. Most of the time, they do the enhancement in

phases, so they should pick some of the requests to be implemented in the

next release. On the other hand, they have to satisfy customers as much

as possible without exceeding the development budget’s maximum limit.

This dilemma is called in literature as Next Release Problem (NRP)[1].

In NRP, the challenge is to pick a set of requirements that can be de-

livered within the budget while meeting customers’ satisfaction. Making

an incorrect decision may lead to a serious mistake. Good customers

can be lost if their requirements didn’t implement; the software develop-

ment company may exceed the budget or even not deliver the release on

time[4].

Software systems have become more popular use in our daily life.

Also, the extensions of software systems have been increased and be-

come more complex. Moreover, software companies have to develop and

release product releases in a limited time. So, software development com-

panies have to efficiently deal with features suggested by the customers

because it is impossible to implement all requests. Thus, the problem here

is to minimize the effort (time and money) and meet the customer’s sat-

isfaction. Selecting an optimal subset from these requests which achieve

15

client satisfaction in the shortest time and lowest cost is the main chal-

lenge of software development companies. Sometimes, there are con-

straints in choosing the requirements. For example, two requirements

may can’t be implemented with the same release. However, we may have

two requirements that must be developed in the same release, or one of

them depends on the other. These constraints increase the complexity of

dealing with this problem.

This challenge can be solved manually by finding all the solutions and

calculate the cost and profit for each solution. The best solution is the so-

lution that gets the highest profit and the lowest cost. This method is ap-

plicable to small scale projects. But when there is a large scale project; the

number of possible solutions will grow exponentially; suppose we have

two values for including the requirement, either 0 or 1, since 1 means

will include the requirement, and 0 means will not include the require-

ment we will have 2K solution space for K requirements. Thus, when

we deal with large scale projects, the classical methods of NRP become

impractical [45].

This problem becomes more complicated when we deal with multi

objectives, and since meeting customers satisfaction and minimizing the

efforts are contradictory objectives, this problem has classified in the lit-

erature as a Multi-Objective Optimization Problem (MOOP)[49].

Referring to the difficulty of dealing with NRP; In literature, it has

been classified as a Knapsack problem, and Knapsack is under the cat-

egory of NP-hard [38]. As a consequence, this problem can’t be solved

16

for a large number of requirements using exact optimization techniques

where the number of possible solutions is very high. In this case, the ap-

proximation techniques (e.g., metaheuristics) can be used to tackle this

problem [21]. Despite the fact metaheuristics algorithms cannot guaran-

tee to find the best solution, they can find near-optimal solutions in a

reasonable time [16].

This solution will be a single point solution in case of Single-Objective

optimization algorithms. But in case of MOOP algorithms, it will be a list

of feasible solutions which is called the Pareto optimal set. When this list

is plotted in the objective space, it will be called as Pareto Front [49].

However, the solutions obtained in the Pareto should be close as much

as can to the "optimal pareto front" of the problem. In NRP, the solu-

tions obtained should produce the highest possible satisfaction of the

customers while decreasing the development cost. Moreover, the Pareto

front should provide a well-distributed solution that covers the maxi-

mum number of different solutions[16].

Despite that NRP can be obtained as MOOP, there is a lot of research

that has considered this problem as a Single-Objective optimization prob-

lem. Moreover, some researchers have converted the objectives to a single

objective using aggregations function[9].

Recently, many Swarm Intelligence (SI) metaheuristics algorithms have

been proposed. It has been used in different optimization fields with

much success[8]. One of these algorithms is Harris Hawks Optimization

(HHO) [26].

17

HHO optimization algorithm is recently produced by Heidari et al.

in 2019 [24]. This algorithm mimics the way of how Harris’ hawks chas-

ing the prey. In this tactic, several hawks attack the prey from different

directions and pounce the prey.

HHO optimization method has already started helping in many dif-

ferent areas with a good reputation. It provides different chasing tech-

niques based on the dynamic nature escaping patterns of the preys.

A Multi-Objective version of HHO is implemented in jMetal 5.6 Frame-

work [34]. This framework is an open-source framework, it is designed

to help in comparing algorithms’ performance using different quality in-

dicators. It has many single multi-objective algorithms that are already

implemented. Also, it has many predefined problems to be used for test-

ing the performance of the algorithms.

1.1 Motivation

Software development companies’ trend is to use the methods that aim

to help in getting feedback from the customers for the delivered releases,

meet customer needs by increasing the speed of the development pro-

cess. Since software development companies are expanding and getting

more customers; this leads to having more requirements, which means

the number of suitable solutions increases exponentially [45].

Having a large set of requirements leading to have a huge number of

18

feasible solutions, which increase the complexity of finding the best solu-

tion. This motivated many researchers to tackle NRP using different op-

timization techniques. However, in optimization field there is a theorem

called No-Free-Lunch (NFL), this theorem proves that there is no supe-

rior algorithm and applicable to solve all optimization problems[30]. This

means almost there is room for enhancement on the current optimization

methods. This motivated our attention to using HHO to tackle NRP since

it has provided a promising search behavior in many fields[26].

1.2 Problem Statement

NRP is known to be a Multi-Objective optimization problem since it has

two contradictory objectives (cost and profit). Therefore, a Multi-Objective

version of the recently proposed HHO algorithm is adopted in this thesis.

In this work, firstly, a MO version of HHO is proposed. After that,

two fitness functions are proposed to calculate cost and profit. Then, a

dominance comparator function is proposed to compare the generated

solutions and differentiate between them.

This work proposes a novel approach for tackling NRP using the HHO.

It provides a promising search behavior in many fields. HHO is used to

find the Pareto front for NRP, since it uses a new search technique that

provides a diversity of search criteria with a fast searching way.

19

1.3 Research Objectives

This research aim is to propose a Multi-Objective version of HHO to help

software companies in the software requirements selection problem. The

implementation is done using JMetal 5.6 framework. HHO algorithm is

enhanced to avoid stucking in local optimal solution in order to improve

a better performance for the first time in literature. To achieve this goal,

three research objectives were formulated as follows:

• To propose a Multi-Objective version of the HHO algorithm.

• Implementing the Multi-Objective version of the HHO algorithm in

JMetal framework.

• To tackle NRP using Multi-Objective HHO.

1.4 Proposal Organization

The following chapters of this thesis report is organized as follows: Chap-

ter 2 contains a literature review of the most related works in the fields

of NRP, swarm-based algorithms, requirements prioritization, require-

ments interactions, and requirements selections. Chapter 3 provides an

overview of the NRP, metaheuristics algorithms, multi-objective algo-

rithms, and Harris Hawks optimization algorithm (HHO).

Chapter 4 describes the proposed approach’s details and how HHO is

converted from Single-Objective optimization algorithm to Multi-Objective

20

optimization algorithm. It also shows how NRP is presented to be tack-

led using the Multi-Objective HHO algorithm.

Chapter 5 shows the results that are achieved using the proposed ap-

proach. Finally, Chapter 6 present the conclusion and future works.

21

Chapter 2

Background

This chapter introduces the NRP as well as the optimization algorithm

used in tackling this problem. Moreover, this chapter will cover the method

used to convert the HHO from Single-Objective to Multi-Objective.

2.1 The Next Release Problem

The NRP takes its role in selecting the requirement that should be devel-

oped in the software’s next release. The selection of requirements pro-

cess aims to find the set of requirements that achieve the maximum profit

with minimum cost. This challenge can be classified as a Multi-Objective

problem since it handles contradictory goals.

Bagnall et al. [4] defined the NRP as the challenge of selecting the re-

quirement for the next release that meet the (important) customers within

the software requirement company budget.

22

NRP was formulated as bi-objective at the first time in literature by

Zhang et al in [49]. In their formulation, the first objective is the cost

is lifted, while the constraint is presented as a second objective. Then,

a set of efficient solutions in the Pareto sense will be presented for the

decision-maker.

In other words, let R be a set of requirements, and this set is requested

for implementation , and r = (r1, ..., rn) ∈ {0, 1}n is a binary vector of

all requirements where the item ri value will be 1 if and only if the i th

requirement will be implemented in the next release. Let S be a set of

m customers, and s = (s1, ..., sm) ∈ {0, 1}m is a binary customers vector,

where the k th component has a value of 1 if and only if the requirements

of customer k will be implemented in the next release. Let c = (c1, ..., cn)

be the cost vector that related to the requirements and w = (w1, ..., wm)

the weight vector that related to the customers, this vector represents the

customer importance for the software development company. To define

the constraints between the requirements, let P be the set of pairs (i, j)

where requirement i is needed to be implemented before the requirement

j and let Q be the set of pairs (i, k) where requirement i is needed for the

customer k [14].

2.2 Metaheuristics algorithms

Metaheuristic algorithms are simple and very easy to implement algo-

rithms designed to be competitive and alternative for solving many prob-

lems. The most advantage of these methods is that they do not depend

23

on the specific information of the objective or its mathematical analysis.

However, there is a drawback of these methods, they are often very sen-

sitive to any change in the parameters defined by the user. Also, this type

of algorithms may stuck in local optimal solution and not converge to the

global optimal solution [24].

In general. There are two types of metaheuristic algorithms. First one

us the single based solution (i.g. Simulated Annealing (SA)). And the

other is population based (i.g. Genetic Algorithm (GA))[24]. There is a

single solution proposed after the search complete in the first type, but in

the second type, a set of solutions is found.

In the single solution based, only one solution can be proceed[24].

While in the Population Based a set of solutions can proceed, and each

one of them can be the solution of the optimization problem[24].

The solutions added to the set (population) can be created iteratively,

and the adding stopped when the maximum number of iterations reached.

The four main groups of P-metaheuristics are described in Figure 2.1.

FIGURE 2.1: Metaheuristic Techniques [24]

24

Evolutionary Algorithms (EAs) inspired by the Biological Evolution-

ary Behaviors such as selection and mutation. The most popular example

of this type is the Darwinian theory of evolution [24].

Physics-Based algorithms build based on physical laws. Central Force

Optimization (CFO), Gravitational Search Algorithm (GSA), and Bang

Big-Crunch (BBBC) are examples of these algorithms [24].

As the name indicates, Human-Based algorithms mimic Human be-

haviors. Examples of this type are Socio Evolution and Learning Opti-

mization (SELO), Tabu Search (TS), and Teaching Learning Based Opti-

mization (TLBO) [24].

The last category of these algorithms is Swarm Intelligence (SI) algo-

rithms, which mimic the flocks, swarms, or herds which (e.g. self orga-

nized systems, decentralized) [24].

These categories searching process fails in two phases, first phase is

exploration and then the second phase which is exploitation [42]. In the

first phase, the algorithm starts searching randomly. It should encourage

its operators to discover various regions of the search space. In the next

phase, the algorithm starts exploitation by focusing on the neighborhood

of best quality solutions found in the exploration. A well-organized al-

gorithm should balance the exploration and exploitation phases to avoid

stuck in the local optimal solution [24].

25

2.3 Multi Objective Algorithms

In Multi-Objective optimization (MOO) problem, there is no unique opti-

mal solution, but multiple solutions is provided as the best solutions this

set of solutions is called a Pareto front of solutions [11], this set should

satisfy the constraints and optimize the objectives. In other words, the

Pareto front contains Pareto solutions that are non-dominated by other

solutions [9].

For example, we can say solution s = [s1, s2, ..., sn] is dominated so-

lution m = [m1,m2, ...,mn] if there is no objective in m better than corre-

sponding objective in s for any objective i = 1, 2, . . ., n, and there is one

or more objective(s) si, in s better than corresponding objective(s) mi in

m [9].

On the other hand, two solutions are non-dominated if there is no

solution that can dominate the other. Fig 2.2 show the difference between

dominated and non-dominated solution. In this figure 2.2, F1 and F2 are

two objectives that need to be minimized, and solution A is dominant

solution D since F1(A) < F1(D) and F2(A) < F2(D) [9].

In case of MOO problem, the optimal solution is not a single solution.

It is a set of solutions called a Pareto optimal set. This set has to sat-

isfy two constraints; first one, there is no solution in the set dominating

any other solution in the same set. The second one, any other solution

founded in the search space is dominated by one or more solution(s) in

the Pareto optimal set. When this Pareto optimal set is presented in the

26

FIGURE 2.2: dominated and non-dominated solutions with
the Pareto front [9]

objective space it is called as Pareto front [9].

Figure 2.3 explain how a solution can dominates other solutions.

For example, Solution number 3 dominates solution number 2, but

Solution number 3 does not dominates solution number 5.

2.4 Harris Hawks Optimization

Harris Hawks Optimization (HHO) algorithm is one of the recently pro-

posed algorithms, it is one of metaheuristic mechanisms proposed by

Heidari et al. in 2019 [24].

This technique mimics the foraging behavior of Harris hawks in na-

ture. The main goal of this algorithm is to find near-optimal solution(s)

for a given issue by utilizing the population of search agents.

The exploration and exploitation phases of the proposed approach

are starts by exploring prey and then surprise pounce. Different Harris

hawks attacking strategies can be used. Figure 2.4 explain the phases of

HHO.

27

FIGURE 2.3: Optimal Non-dominated Solutions front [9]

FIGURE 2.4: HHO phases [24]

28

2.4.1 Exploration phase

Each hawk in HHO is a candidate solution, and the closest one from the

prey is the best solution. In HHO, the Harris’ hawks randomly choose

a location to perch and wait until they detect a prey, two strategies are

used in detecting a prey. Let consider q as an equal chance for the perch-

ing strategy. They may perch based on other family members’ location

or may perch on a tree that chosen randomly. The two strategies are pre-

sented in Eq. (2.1).

X(t+ 1) =

 Xrand(t)− r1 |Xrand(t)− 2r2X(t)| q ≥ 0.5

(Xrabbit(t)−Xm(t))− r3(LB + r4(UB − LB)) q < 0.5

(2.1)

whereX(t+1) represents position of hawks in the next iteration t,Xrabbit(t)

is the rabbits’ position,X(t) is the hawks current position vector, r1, r2, r3,

r4, and q are random numbers between 0 and 1, and these number should

be updated for each iteration, LB is the lower bound and UB is the upper

of variables, Xrand(t) is a hawk location that randomly selected, and Xm

is the average location of the hawks.

Harris hawks’ locations inside the family group can be generated us-

ing range (LB, UB). In Eq. (2.1), the first rule generates the hawks loca-

tion randomly. On the other hand, the second rule calculates the location

based on the difference of location and the average position of the group

plus a random number scale. The variable r3 is a scaling variable, which

29

increase the random nature of the rule when r4 becomes close values to 1

and similar distribution patterns may occur. The hawks average position

is presented in Eq. (2.2):

Xm(t) =
1

N

N∑
i=1

Xi(t) (2.2)

where Xi(t) represent the hawk location in the iteration t and N is the

the total number of the hawks.

2.4.2 Transition from exploration to exploitation

The HHO algorithm transfer from exploration phase to exploitation phase

using different exploitation strategies, it depends on the escaping energy

of the prey. The energy of the prey decreases during the escaping. The

energy of prey is modeled in the following equation:

E = 2E0(1−
t

T
) (2.3)

where E indicates the prey escaping energy, T is the maximum itera-

tions number, and E0 is the initial energy of the prey.

In HHO, E0 is randomly changed between 0 and 1 in each iteration.

When E0 decreases from 0 to -1, the rabbit is physically flagging; how-

ever, when E0 is increased, this indicates that the rabbit is strengthening.

When escaping energy is |E| ≥1, the Harris hawks keep in the explo-

ration phase and search in a different region for a rabbit location. When

|E| <1, the algorithm transition from exploration phase to exploitation

30

phase and start searching in the neighborhoods. The time-dependent be-

havior for the rabbit energy E is demonstrated in Fig. 2.5.

FIGURE 2.5: Behavior of rabbit escaping energy during two
runs and 500 iterations [24]

2.4.3 Exploitation phase

After several attempts in the exploration phase, the rabbit escaping en-

ergy will be decreased, and the hawks will start another attacking strat-

egy, the hawks start the attack by surprise pounce on the prey detected in

the exploration phase. However, the rabbit may attempt to escape. The

hawks will do different chasing styles according to escaping behavior.

There are four possible strategies to attack the escaping prey.

When the attack starts, the prey will always have a high escaping en-

ergy, and it tries to escape. Let r be the chance when the prey escaping

successfully (r <0.5), and (r ≥0.5) when the prey not escaping success-

fully before the surprise pounce. Based on the pray behaviour, the hawks

will start hard and soft besiege to catch the prey. The hawks will start the

attack from different directions and become closer and closer from the

31

prey, also the prey energy will decrease after several of minutes, the prey

will start losing its energy; then, the hawks will start intensive besiege to

catch the prey.

In this phase, when |E| ≥0.5, the hawks perform soft besiege, and

when |E| <0.5, the hawks perform hard besiege.

Soft besiege

When r ≥ 0.5 and |E| ≥ 0.5, the energy of the rabbit is still enough for

escaping, in this case, the Harris hawks encircle the rabbit and try to make

the rabbit loos his energy. After that, they perform the surprise pounce.

This behaviour is model as the eq 2.4:

X(t+ 1) = ∆X(t)− E |JXrabbit(t)−X(t)| (2.4)

∆X(t) = Xrabbit(t)−X(t) (2.5)

where ∆X(t) is the represent the difference between the rabbit posi-

tion and the current location in the iteration t, r5 is a random number

between 0 and 1, and J = 2(1 − r5) is the rabbit random jump strength

throughout the escaping. J is a random value that changes in each itera-

tion to simulate the rabbit motions in nature.

Hard besiege

When r ≥0.5 and |E| <0.5, the prey becomes exhausted and his energy

low. In this case, the rabbit will be encircled hardly bu the hawks to per-

form the surprise pounce. The current hawks positions in this situation

32

are updated using eq 2.6:

(2.6):

X(t+ 1) = Xrabbit(t)− E |∆X(t)| (2.6)

This step is also explained in fig 2.6

FIGURE 2.6: Hard besiege example [24]

Soft besiege with progressive rapid dives

In case of |E| ≥0.5 and r <0.5, the rabbit energy is still enough for suc-

cessfully escape, and hawks need to do a soft besiege before the surprise

pounce.

In order to formulate the prey escaping patterns in a mathematical

model, the Levy Flight (LF) concept is used in HHO [6]. LF concept is

used to mimic the zigzag motion of the preys during the escaping [24].

The following equation performs the hawks movement in this phase:

Y = Xrabbit(t)− E |JXrabbit(t)−X(t)| (2.7)

After that, the hawks compare the last movement result to the previ-

ous movement to decide if it is a good dive or not. After that, hawks will

33

start diving based on LF patterns that presented in the following equa-

tion:

Z = Y + S × LF (D) (2.8)

where D is the problem dimension and S is a random vector of size

1 × D and LF is the function of levy flight. LF patterns is represented in

Eq. (2.9):

LF (x) = 0.01× u× σ
|v|

1
β

, σ =

(
Γ(1 + β)× sin(πβ

2
)

Γ(1+β
2

)× β × 2(β−1
2

))

) 1
β

(2.9)

where u, v are random values between 0 and 1, β is a constant with a

default value set to 1.5.

The final stage in the soft besiege phase for updating the hawks posi-

tions in presented in Eq. (2.10):

X(t+ 1) =

Y ifF (Y) < F (X(t))

Z ifF (Z) < F (X(t))
(2.10)

where Y and Z are calculated using Eqs.(2.7) and (2.8).

A demonstrated of this step is in Fig. 2.7.

34

FIGURE 2.7: Soft besiege with progressive rapid dives[24]

Hard besiege with progressive rapid dives

In case of |E| <0.5 but r <0.5, the rabbit energy is exhausted , and hard

besiege should be done before the surprise pounce. The following equa-

tion performs the hard besiege in this phase:

X(t+ 1) =

Y ifF (Y) < F (X(t))

Z ifF (Z) < F (X(t))
(2.11)

where Y and Z are calculated using Eqs.(2.12) and (2.13).

Y = Xrabbit(t)− E |JXrabbit(t)−Xm(t)| (2.12)

Z = Y + S × LF (D) (2.13)

where Xm(t) is calculated using Eq. (2.2). Fig. 2.10 represents an

example of this step.

35

[b]0.65

FIGURE 2.8: The process in 2D space [24]
[b]0.65

FIGURE 2.9: The process in 3D space [24]

FIGURE 2.10: Hard besiege with progressive rapid dives
example in 2D and 3D

36

2.4.4 Pseudocode of HHO

The HHO algorithm pseudocode is reported in Algorithm 2.11.

FIGURE 2.11: HHO algorithm pseudocode [24]

37

Chapter 3

Related Works

For a large project, determining the requirements that should be imple-

mented in the next software release becomes a complex problem. The

complexity of this problem is because of dealing with two contradictory

objectives (cost and profit). Having an incorrect decision may lead the

company to run out of budget or lost essential customers. This prob-

lem motivated the attention of many researchers to find a solution to this

problem.

Different methods are used to tackle the NRP. Most of the used meth-

ods fails in two categories [40]. The first one contains the Software En-

gineering Decision Support (SEDS) methods. Which is a research field

that uses decision-making algorithms to tackle software engineering field

problems. This category includes algorithms like Quality Function De-

ployment (QFD), Analytical Hierarchy Process (AHP) and fuzzy logic. It

is usually focusing on ranking and prioritizing the requirements.

The other category is the Search Based Software Engineering (SBSE)

38

methods. which is a research field that uses search based optimization

algorithms to tackle software engineering problems [40]. linear program-

ming, heuristic, and meta-heuristic algorithms are examples of the algo-

rithms are belong to this category.

This chapter review the past related works to the problem we have,

and how the researchers tackled it.

NRP is classified as an NP-hard problem according to Papadimitriou

and Steiglitz [38], since it evaluates two conflicting objectives, it tries to

find the best set of requirements that should be developed in the next

software development iteration. The selection of this set of requirements

should minimize the development cost and maximize the clients’ satis-

faction.

Karlsson in [28] suggested two methods to tackle NRP, which are

Quality Function Deployment (QFD) and Analytical Hierarchy Process

(AHP). In AHP, classification of requirements is a pair of [cost, value],

but in QFD, requirements are prioritized on an ordinal scale. But, both

methods don’t handle requirement interactions, and they are not conve-

nient in large projects duo to their long-running time.

Bagnall et al in [4] was formulated NRP for the first time in litera-

ture as a Single-Objective problem. They used three algorithms to tackle

NRP. They compared Greedy Randomized Adaptive Search Procedure

(GRASP), hill climber, and Simulated Annealing (SA) algorithms in find-

ing the best combination of software requirements for different data sizes.

They found that the SA achieved better performance than the GRASP and

39

the hill climber, especially with large scale NRP instances [4].

The original problem proposed by Bagnall has been tackled by several

researchers using different metaheuristics algorithms. However, most of

these algorithms that were published before 2007 were based on Single-

Objective evolutionary algorithms. Some of these works combined the

objectives using aggregation function and tackled it as a Single-Objective

such as [5, 22]. In [22], the authors used a genetic algorithm to introduce

a new method to determine the optimal set of requirements. However,

they didn’t consider the interactions between these requirements. On

the other hand, in [5], the authors tried to solve NRP using Greedy and

SA algorithms, but they also didn’t consider the interactions between the

requirements.

In 2007, Zhang et al [49] proposed a Multi-Objective version of the

NRP for the first time in literature. However, in this approach, each ob-

jective was tackled separately without considering any other objectives

or constraints like interactions between the requirements or the cost lim-

itations.

A trade-offs comparison between multiple clients using Multi-Objective

optimization is used in [18, 19]. This research considered the potentially

conflicting requirements priorities, but the intersection between require-

ments are not handled. Moreover, in [29, 16, 27], different Multi-Objective

optimization algorithms were proposed without considering dependen-

cies among requirements.

The authors in [27] combined the Hill Climbing (HC) algorithm with

40

the Ant Colony Optimisation algorithm (ACO) to select the optimal sub-

set of requirements. However, in [29], a quantum inspired evolutionary

algorithm is proposed to tackle NRP.

In [15], the Pareto Archived Evolution Strategy (PAES), NSGA-II, and

MOCell were employed in finding the optimal set of requirements.

The Ant Colony System (ACS) algorithm is employed by authors in

[13] for solving NRP. The main point of this paper is that it employed

five different ways to consider the interactions between the requirements

that should be implemented in the next release. The main types that were

considered in this paper are listed below:

• Precedence. ri ⇒ rj . A requirement ri cannot be selected if a re-

quirement rj is not implemented.

• Combination. ri⊗ rj . A requirement ri cannot be included without

including a requirement rj .

• Exclusion. ri ⊕ rj . A requirement ri can not be included with a

requirement rj in the same release.

• Revenue-based. The implementation of a requirement ri will affect

other requirements values.

• Cost-based. The development of a requirement ri will affect other

requirements implementation cost.

The Teaching-Learning-Based Optimisation (TLBO) algorithm was used

in [10] to tackle the NRP. In that paper, they formulated NRP as a MOOP

41

with two objectives: the total software requirement cost and overall cus-

tomer satisfaction. Also, they considered three types of interactions be-

tween requirements.

In [9], authors developed Differential Evolution with the Pareto Tour-

nament (DEPT) algorithm to tackle NRP. They used DEPT to search for

high-quality sets of solutions in a predefined development effort and

prioritize software requirements while considering requirements inter-

actions. They made an enhancement on Differential Evolution (DE) al-

gorithm that initially proposed in [44] to add the capability to deal with

MOOP. However, they took the ideas of dominance and non-dominated

sorting from NSGA-II . These ideas are used to sort the solutions and

qualify thim within the population in a Multi-Objective environment.

Moreover, they took the idea of a non-dominated solution archive (NDS-

archive) from PAES. This NDS-archive is used to update the algorithm’s

best solutions after applying the solution to an acceptance function.

An interactive model for the NRP using the ACO algorithm was de-

veloped in [33]. In this model, the user can define which requirements

should be included or excluded in the next release. So they used human

expertise during the search to achieve better performance results than

mathematical models.

In [3], the authors introduced an architecture based on genetic algo-

rithm and machine learning to tackle NRP.

The Grey Wolf Optimisation (GWO) algorithm was used to select the

best-proposed requirements in [31]. The authors compared their work

42

with AHP algorithm, and they found that GWO performs better than the

AHP mechanism by approximately (30%).

Glauber et al. [7] investigated solving the large scale NRP using two

metaheuristic algorithms, ACO and the Particle Swarm Optimization (PSO).

The researchers aimed to identify which metaheuristic algorithm is more

suitable for handling the large scale NRP. They proved that the PSO algo-

rithm achieved much better performance than ACO, and the PSO’s best

results were obtained with a higher number of particles. Moreover, their

experiments showed that ACO could achieve the same performance as

PSO for small sizes dataset.

In [7], the authors tackled NRP using two metaheuristic algorithms,

the ACO and the PSO. In this work, researchers tried to find which meta-

heuristic algorithm achieves better performance in dealing with NRP.

They proved that PSO achieved better performance than ACO, also the

foundation that best PSO’s result was obtained with a higher number of

particles. On the other hand, they found that ACO can achieve the same

performance as PSO for a small size of datasets.

In [1], the authors used NSGA-II and PSO. In this work, the qualifi-

cation of requirements is determined by the three factors; dependencies

between requirements, product integrity, and product value. They en-

coded the requirements model in a binary string. after that they tried

to find possible solutions by using binary version of NSGA-II and PSO

algorithms.

In [45], the authors proposed a mathematical formulation of the NRP.

43

This work handled non-additive customer valuations across requirements.

They conduct experiments to test the performance of Multi-Objective

evolutionary algorithms (MOEAs) in tackling NRP with non-additive

valuations and implication constraints on requirements.

In [2], they proposed an algorithm based in fuzzy inference system to

help in choosing the requirements for the next release. They compared

the result of the experiment with a genetic algorithm. The generated so-

lution by the proposed algorithm provided a better solution than the ge-

netic algorithm.

In [8], A Fuzzy Multi-Objective Particle Swarm Optimization (FMOPSO)

algorithm has been proposed. The authors conduct an experiment to

compare the proposed algorithm with other state-of-the-art algorithms.

They found that FMOPSO is adequate for finding very detailed Pareto

Fronts comparing to different algorithms.

In [14], the authors proposed five methods to find a list solutions that

is spread well at any time during the search, and the decision-maker has

the ability stop the searching when there is an acceptable solution.

In [23], the authors proposed an Improved Binary Particle Swarm Op-

timization (IBPSO) algorithm to address the Multi-Objective constrained

NRP. Also, they enhanced the approach by using a greedy methodology

to seed the swarm with good solutions. They found that the enhanced

approach achieved better performance than the original binary PSO.

Finally, the Binary Artificial Algae algorithm is proposed and em-

ployed for finding the optimal subset of requirements in [40], they also

44

handled the case if customers’ priorities is changed during the product

development period.

From reviewing the related works, we found that different optimiza-

tion methods are used in tackling NRP. Most of them didn’t handle the

requirement interactions. The other leak we found in the related works

that most of the works tackled NRP as a Single-Objective problem. More-

over, some of the methods are not convenient in large projects due to their

long-running time.

All the previous works are focused on finding the optimal require-

ments subset in minimal time, but they still didn’t find an optimal way

to fix NRP. Also, they tried to find a large variety of solutions to be pro-

vided for the decision-makers.

45

Chapter 4

Research Methodology

This research will follow the controlled experiment methodology in soft-

ware engineering, which contains three main stages[39]. It started by

deciding the problem by defining the objectives. After that, the design

of how to achieve the defined objectives by defining the set of questions.

Also, defining a set of tests to be conducted through the experiment as

well as defining the quality indicators in order to evaluate the results[39].

After the design is ready, the preparation for the experiment started

by collecting the data sets to be used for evaluating the proposed ap-

proach. After that, the software development phase started by convert-

ing HHO to Multi-Objective HHO and implement it in JMetal 5.6 Frame-

work. Also, NRP is implemented as a Multi-Objective problem in JMetal

5.6.

The next step is comparing the new proposed approach with three of

the best optimization algorithms. A set of commonly used quality indica-

tors is used to evaluate the proposed approach and compare it with other

46

algorithms.

4.1 Used Data Sets

The datasets used in this thesis are from related NRP literature [46]. It

is available online for research on http://cstar.whu.edu.cn/p/nrp/ . It

contains real and classic instances.

The classic data sets are generated in labs for experimental purposes.

It includes the cost per each requirement and the dependency between

the requirements. Moreover, the profit that will be gain from delivering

customer requests of requirements. It contains 5 groups. Each group

has different levels of requirements dependencies. For example, all the

requirements in nrp-1 dataset are classified into 3 levels. Requirements

in the 2nd level may depend on some requirements in the 1st level, while

requirements in the 3rd level may depend on requirements in the 1st and

2nd levels. Figure 4.1 illustrates a sample of dependencies between the

dataset’s requirements.

FIGURE 4.1: Requirements Dependency Sample [46]

Table 4.1 list the classic data set instances characteristics.

47

TABLE 4.1: Classic Data Set Instances Characteristics

Instance # of Customers # of Requirements # of Dependencies Total Profit

nrp1 100 140 97 875

nrp2 500 620 556 5048

nrp3 500 1500 1486 8870

nrp4 750 3250 4961 22161

nrp5 1000 1500 2036 3992

The second type of the data sets that used is the realistic data sets,

it was derived from a real open source projects by the original authors,

in this type there is no dependencies between the requirements [46], the

data set instances characteristics appears in table 4.2.

According to dataset size, datasets categorization fails in five cate-

gories: the small, big, large, x-large, and xx-large size dataset instances as

appears in table 4.3.

Two datasets are chosen to be used from classic datasets, and four

datasets are chosen to be used from realistic datasets as appears in table

4.4.

48

TABLE 4.2: Realistic Data Set Instances Characteristics

Instance # of Customers # of Requirements Total Profit

nrp-e1 536 3502 13150

nrp-e2 491 4254 15928

nrp-e3 456 2844 10399

nrp-e4 399 3186 11699

nrp-g1 445 2690 13277

nrp-g2 315 2650 12626

nrp-g3 423 2512 12258

nrp-g4 294 2246 10700

nrp-m1 768 4060 15741

nrp-m2 617 4368 16997

nrp-m3 765 3566 13800

nrp-m4 568 3643 14194

TABLE 4.3: Dataset Instances Size Categories

Category Datasets Requirement Size Range

Small nrp1, nrp2 [100, 1000]

Medium nrp3, nrp5 [1001, 2000]

Large nrp-e3, nrp-g1, nrp-g2, nrp-g3, nrp-g4 [2001, 3000]

X-Large nrp4, nrp-e1, nrp-e4, nrp-m3, nrp-m4 [3001, 4000]

XX-Large nrp-e2, nrp-m1, nrp-m2 [4001, 5000]

49

TABLE 4.4: Chose Data Set Instances

Instance # of Requirements # of Dependencies # of Customers Total Profit

nrp-e1 3502 0 536 13150

nrp-e2 4254 0 491 15928

nrp-g1 2690 0 445 13277

nrp-g2 2650 0 315 12626

nrp-m1 4060 0 768 15741

nrp-m2 4368 0 617 16997

nrp1 140 97 100 875

nrp4 3250 4961 750 22161

4.2 The Proposed Approach

One of the most recently proposed SI algorithms is used in this work. A

Multi-Objective version of the HHO algorithm is proposed and used to

tackle NRP. A Single-Objective version of HHO using Java language is

available online.

In the first version of the proposed approach; the HHO algorithm was

converted from a Single-Objective to Multi-Objective using Fuzzy Logic

methodology, and used to find the best set of requirements that achieved

customers satisfaction within the limited development budget. In such

a problem, requirement selection depends on the value, integrity, and

dependencies between requirements. After several attempts of enhance-

ments, we decided to use another way to convert the HHO algorithm

from Single-Objective to Multi-Objective.

https://www.researchgate.net/project/Harris-hawks-optimization-HHO-Algorithm-and-applications/update/5df07bbbcfe4a777d4f98140

50

In the new version, HHO is converted from Single-Objective to Multi-

Objective by creating two fitness functions; profit fitness function and

cost fitness function.

As NRP is a Multi-Objective problem, two fitness functions are pro-

posed. The first one is to calculate the profit for the generated solution.

The other one is to calculate the cost of implementing the same solution.

In each iteration, the two fitness functions should be evaluated for each

member of the population list.

4.2.1 Convert HHO from Continuous to Discrete

The original HHO algorithm is implemented to deal with problems that

have continued solution variables, but NRP has only two variables 0 and

1. Thus, the HHO algorithm in this thesis is enhanced to tackle such a

problem. HHO is modified to tackle the binary problem by setting the

maximum number for each bit as 1 and the minimum number as 0. After

each step in executing the algorithm, a check is executed to check if the

number is more than or equal 0.5; it will be rounded to 1, else it will be

rounded to 0. As mentioned before, in the NRP problem, each solution

consists of bits. If the bit is 1, the requirement will be included, and if the

bit is 0, then the requirement will be excluded.

4.2.2 Cost Fitness Function

Each requirement in the data sets has an implementation cost. The total

cost of the solution is the summation of cost for the selected requirements,

51

the pseudo-code 1 describes the formula that used to calculate the cost for

each solution.

Algorithm 1 Pseudo-code of cost fitness function

Inputs: The binary set of solution Xi

Outputs: The cost of implementing the solution
Initialize the cost of solution total = 0
for (each bit in the solution (Xi)) do

if (Xi > 0) then
total = total + cost[i]

Return total . Return the cost of solution

4.2.3 Profit Fitness Function

Software development companies have many customers. Each customer

will pay some money if his requirements are implemented. Thus, the to-

tal profit that will be gain for the solution is the summation of profit that

will be gain from a customer if the solution contains all the requirements

requested by that customer. And since we have two contradictory objec-

tives. One is minimized, and the other is maximized. The maximization

objective will be multiplied by minus to simplify the comparison and

make the two objectives minimized. The pseud-code 2 describes the fit-

ness function to calculate the solution profit.

4.2.4 Comparing and Contrasting Solutions

Since each solution has two contradictory objectives (cost and profit) and

since the better solution who is return highest profit and lowest cost, a

52

Algorithm 2 Pseudo-code of profit fitness function

Inputs: The binary set of solution Xi

Outputs: The profit of implementing the solution
Initialize the profit of solution total = 0
for (each bit in the solution (Xi)) do

if (Xi > 0) then
total = total + profit[i]

Return -1 * total . Return the profit of solution

dominance comparator function is proposed to compare a solution with

each others as appear in Algorithm 3.

Algorithm 3 Pseudo-code of dominance comparator function

Inputs: The binary set of solution Solution1 and Solution2
Outputs: -1, or 0, or 1 if solution1 dominates solution2, both are non-
dominated, or solution1 is dominated by solution2, respectively

Initialize the variable value bestIsOne = 0
Initialize the variable value bestIsTwo = 0
Initialize the variable value result
for (each objectivei in the solution1) do

if (solution1_objectivei != solution2_objectivei) then
if (solution1_objectivei < solution2_objectivei) then

bestIsOne = 1
else if (solution2_objectivei < solution1_objectivei) then

bestIsTwo = 1
if (bestIsOne > bestIsTwo) then

Return -1 . Solution1 is better than Solution2
else if (bestIsOne < bestIsTwo) then

Return 1 . Solution2 is better than Solution1
else if (bestIsOne == bestIsTwo) then

Return 0 . both are non-dominated

53

4.2.5 MOHHO Implementation

The optimization process of MOHHO for NRP starts by generating a set

of random solutions to form the population. After that, the algorithm

starts the searching iterations. Each iteration begins with the exploration

phase; in this phase, searching for the best solution is random. The best

solution found in the exploration phase will be used in the next phase,

which is the exploitation phase. In the exploitation phase, the algorithm

will search in the neighborhood of the best solution found in the explo-

ration phase. The Pseudocode 4.2 describes the proposed algorithm to

tackle NRP.

54

FIGURE 4.2: Pseudo-code of MOHHO algorithm

For more clarification, the flowchart of MOHHO is added in Fig 4.3.

55

FIGURE 4.3: MOHHO

56

4.3 Used Algorithms

Several optimization algorithms have tackled NRP. Some of these algo-

rithms are Genetic Algorithms (GA), and some of them are Swarm Intel-

ligent Algorithms (SIA). In this experiment, the proposed approach has

compared with the most commonly used algorithms in multi-objective

optimization problems. Also, the chosen algorithms have the best results

from the multi-objective algorithms implemented in JMetal 5.4 frame-

work in solving multi-objective problems.

4.3.1 NSGA-II

NSGA-II (Non-dominated Sorting Genetic Algorithm II) is a well-known

genetic multi-objective algorithm [47]. It is used in different optimization

problems and achieved a good reputation. NSGA-II has three special

characteristics. It has a fast non-dominated sorting approach, fast crowd-

ing distance estimation procedure, and a simple crowding comparison

operator. The Pseudocode of NSGA-II algorithm is added in Fig 4.4

57

FIGURE 4.4: NSGA-II Code

4.3.2 MOCell

MOCell (Multi-Objective Cellular Genetic Algorithm), it is proposed by

Nebro et al in [35], which is a cellular genetic algorithm (cGA).

In this algorithm, each cell can cooperate only with its nearby neigh-

bors in the breeding loop. This can be shown in Figure 4.5.

58

FIGURE 4.5: MOCell [35]

The exploration phase in cGAs depends mainly on the overlapped

small neighborhoods, which help in exploring the search space (diversi-

fication). The exploitation (intensification) phase happens for each neigh-

borhood by genetic operations. MOCell also tries to find the non-dominated

solutions and store them in an external archive. This archive which has

a limited size uses the crowding distance that used in NSGA-II to keep

diversity in the Pareto Front.

59

FIGURE 4.6: MOCEllCode

4.3.3 MOCHC

MOCHC is a multi-objective version of CHC, which is an evolutionary

algorithm proposed by Eshelman in [17].

This algorithm aims to tackle binary-coded problems. The main fea-

ture in this algorithm is the use of HUX crossover mechanism.

A multi-objective version of CHC (MOCHC) is proposed by Nebro et

al. in [36] to tackle Radio network design (RND) problem. They com-

pared the proposed approach with NSGA-II in order to assess the perfor-

mance. MOCHC has proven to be more efficient than NSGA-II.

60

FIGURE 4.7: CHCCode

4.4 Quality of the Solutions Obtained

In this experiment, Hypervolume quality indicator is used to evaluate

the solutions obtained from running the experiment. Also Friedman and

Wilcoxon are used as statistical analysis.

4.4.1 Hypervolume

Hypervolume (HV) quality indicator is categorized as a single unary

value that measure the spread of the obtained solution along the Pareto

front, also the closeness of the solution to the Pareto-optimal front. In

other words, it is an algorithm performance measure, it measures the

61

convergence of the algorithm throw the experiment execution, and the

diversity of the obtained solutions [41]. Given that a list Q contains the

vectors of solutions, the algorithm calculates the hypercube value where

the intersection occurs, also add this value to a partial sum value as ap-

pears in formula 4.8.

FIGURE 4.8: Hypervolume

The total sum value will be the Hypervolume union, which represents

the intersections between each vector in the solution and a reference point

[41]. The algorithms with higher HV value is better than the algorithms

with lower HV value.

4.4.2 Statistical Analysis

In each experiment some of statistical analysis should be measured to

make sure that the obtained results cannot have occurred by chance.

Friedman Statistical Analysis

The Friedman test is a non-parametric statistical test developed by Milton

Friedman [20]. Friedman statistical test is used multiple test attempts to

detect differences in treatments.

62

This statistical test can be used to approved the null hypothesis that

different of group measures have same variant to a certain level of signif-

icance. Otherwise,it means these group measures have different variance

values.

jMetal has the capability to calculate the Friedman statistical test.

Wilcoxon Statistical Analysis

The Wilcoxon test is a non-parametric statistical test. It is used to compare

two related samples and test if they are statistically significant or not [12].

This test can be used to tell if the results between the optimization

algorithms are statistically significance and did not occur randomly or

by chance.

Two symbols are used (ON) to indicate that the results are statistically

significant when p−value < 5% between two optimization algorithms for

each data set.

The black triangle (N) means that there is a relationship between X

& Y; also, X performance is better than Y. However, down triangle (O)

means that Y performance is better than X. Moreover, a dash symbol (–)

indicates that results for a given test case are not statistically significant,

and there is no difference between using X & Y.

63

Chapter 5

Results

In this chapter, the experiment parameters used in the experiment were

presented. Also the used datasets are mentioned, followed by descrip-

tion for the quality indicator used to test and compare used algorithm’s

performance. Finally, discussion and analysis of the experiment results.

5.1 Experimental Setup

In this thesis, all experiments were run on a machine with windows 10

64 bit, Core(TM) i7-3520M CPU @ 2.90GHz (4 CPUs) and 8GB RAM, and

MOHHO algorithm is implemented using jMetal 5.6 above Java.

A jMetal is designed to run an experiment with multiple datasets.It

is also has the capability to run different algorithms and setup the con-

figuration for each algorithm independently. Moreover, it can calculate

lots of quality indicators and generate meaningful statistics for the ex-

periment like Wilcoxon and Friedman statistics. Also, generate graphs

64

like box plots to compare the algorithms, and provide the needed data to

draw the convergence graph.

The used parameters for the experiment are explained in table 5.1

TABLE 5.1: MOHHO Parameters

Parameters Values

Number of iterations 50

Population number 100

Crossover rate 0.9

Mutation rate 0.35

Number of independent runs 25

The execution has been repeated twenty-five times for each algorithm

on each dataset to reduce the probability that an algorithm started with

a bad solution and optimized a bad solution or started by luck in a good

solution. In SI algorithms, the initial solution is generated randomly. So

the initial state is important. Generally, SI algorithms try to solve the

problem of getting stuck in local optima. However, the initial solution

that the algorithms start with may affect the algorithm accuracy.

65

TABLE 5.2: HV. Median and Interquartile Range

MOHHO NSGAII MOCell MOCHC
nrp-e1 3.41e− 011.1e−01 2.45e− 011.4e−02 2.44e− 011.9e−02 2.39e− 011.8e−02

nrp-e2 2.48e− 011.3e−01 8.24e− 021.3e−02 8.84e− 021.9e−02 8.41e− 021.6e−02

nrp-g1 3.13e− 011.9e−01 2.38e− 011.2e−02 2.40e− 011.1e−02 2.33e− 011.4e−02

nrp-g2 2.41e− 012.9e−02 1.93e− 011.7e−02 1.98e− 011.3e−02 1.92e− 011.7e−02

nrp-m1 3.07e− 011.3e−01 7.82e− 021.7e−02 8.04e− 022.9e−02 7.29e− 022.2e−02

nrp-m2 2.38e− 011.3e−01 0.00e+ 001.7e−02 5.87e− 031.4e−02 0.00e+ 001.3e−02

nrp1 4.48e− 012.6e−01 1.98e− 012.8e−02 2.05e− 012.5e−02 1.95e− 011.7e−02

nrp4 2.57e− 011.3e−01 1.71e− 011.4e−02 1.79e− 011.9e−02 1.69e− 011.6e−02

5.2 Experimental Results

In this section a deep analysis of the obtained results is presented.

5.2.1 HV Quality Indicator Median

The obtained results are compared using HV quality indicator. Four dif-

ferent algorithms are used with eight different dataset sizes. Each exper-

iment is repeated 25 times to get accurate results, and the median of the

25 runs is presented for each data set as appears in table 5.2.

Table 5.2 shows HV median values for small, medium, large datasets.

It represents the median result of 25 independent runs. Inspecting HV

Median values, the following observations can be discussed:

1. MOHHO outperformed NSGA-II, MOCell and MOCHC: Grey cells

in the tables 5.2 points to the algorithm with higher HV per dataset.

Out of the 8 datasets of different sizes; 8 times MOHHO HV values

were better than NSGA-II, MOCell and MOCH. MOHHO outper-

formed other algorithms perfectly for the NRP in different dataset

sizes.

66

2. MOCell outperformed NSGA-II, and MOCHC. Out of the 8 datasets

of different sizes; 7 times MOCell HV values were better than NSGA-

II and MOCH.

3. NSGA-II outperformed MOCell and MOCHC for nrp-e1 dataset,

which is x-larg data set. So NSGA-II can achieve good reputation

for large scale data sets.

From the previous observations, we can conclude that the MOHHO

outperformed the other algorithms in all cases. It has the highest HV

value for different dataset sizes (number of requirements and customers)

and different dataset types (with dependencies and without dependen-

cies between requirements).

5.2.2 Friedman Statistical

JMetal 5.4 framework has the capability to calculate the Friedman sta-

tistical test. Which is a non-parametric statistical test developed by Mil-

ton Friedman. In this experiment, Friedman test is calculated in order to

compare the performance of the new proposed algorithm and the other

algorithms. The best algorithm is which has the highest average ranking

value. Table 5.3 shows that MOHHO performed better than the other

algorithms.

Friedman statistic considering reduction performance (distributed ac-

cording to chi-square with 3 degrees of freedom: 20.7).

67

TABLE 5.3: Average ranking of the algorithms

Algorithm Ranking
MOHHO 3.875
NSGAII 1.625
MOCell 3.125
MOCHC 1.375

5.2.3 Wilcoxon Statistical

The Wilcoxon test is a non-parametric statistical test. It is used to compare

two related samples and test if they are statistically significant or not [12].

The results of statistical tests using Wilcoxon were collected and ag-

gregated so that we can tell if the results between the optimization al-

gorithms are statistically significance and did not occur randomly or by

chance.

FIGURE 5.1: Wilcoxon Statistical Test

From table 5.1, the following observations can be discussed:

1. MOHHO is statistically significant with NSGAII, MOCell and MOCHC

for 7 out of 8 datasets, also it performed better than NSGAII, MO-

Cell and MOCHC for the 7 datasets.

68

2. NSGAII is statistically significant with MOCell for 2 out of 8 datasets,

also it performed worse than MOCell for the 2 datasets.

3. There is no statistically significant between NSGAII and MOCHC.

4. MOCell is statistically significant with MOCHC for 2 out of 8 datasets,

also it performed better than MOCHC for the 2 datasets.

From the previous observations, we can conclude that the MOHHO

algorithm outperforms the other algorithms using Wilcoxon statistical

analysis.

5.2.4 Box Plots

In order the compare the obtained result that presented in table 5.2, box

plots charts are used. Box plots is generated in order to have a clear

comparison between the algorithms.

Moreover; box plots were used to help us in understand the distribu-

tion characteristics of HV values for each dataset per each one of the algo-

rithms. Figures 5.2, 5.3 illustrates box plots for a representative datasets.

The following information from the box plots can be extracted:

1. HHO outperformed the other algorithms in terms of the maximum

median HV value can be obtained for 8 datasets for 25 runs as ap-

pears in table 5.2, maximum global values obtained by each al-

gorithm for all dataset categories. Cells highlighted in dark grey

means that this value is the maximum value for the data set.

69

2. NSGAII and MOCell compete in terms of the maximum median HV

value can be obtained. NSGAII was performed better than MOCell

for nrp-e1 dataset. On the other hand, MOcel performed better on

the other 7 data sets.

3. MOCHC algorithm achieved the minimum HV value for all datasets.

4. Data centering for MOHHO is higher than other algorithms as ap-

pear in figures 5.2, 5.3; this means that MOHHO can allocate promis-

ing solutions faster than other algorithms.

FIGURE 5.2: Box Plots group1

70

FIGURE 5.3: Box Plots group2

5.2.5 Convergence Curve

The convergence curve figure is used to compare the convergence speed

of the algorithms. It is also used to find the algorithm that can allocate

better solutions in fewer iterations. As appears in figures 5.4, 5.5, 5.6,

5.7, 5.8, 5.9, 5.10 and 5.11, MOHHO can allocate perfect solutions better

and faster than other algorithms. It is started with imperfect solutions,

but after a few iterations, it can reach promising solutions. This happens

because the MOHHO algorithm populations learn from each other.

71

FIGURE 5.4: Convergence Curve nrp-e1

FIGURE 5.5: Convergence Curve nrp-e2

72

FIGURE 5.6: Convergence Curve nrp-g1

FIGURE 5.7: Convergence Curve nrp-g2

73

FIGURE 5.8: Convergence Curve nrp-m1

FIGURE 5.9: Convergence Curve nrp-m2

74

FIGURE 5.10: Convergence Curve nrp-1

FIGURE 5.11: Convergence Curve nrp-2

From the previous performance measuring, we can notice that MO-

HHO is performed better than other solutions in many factors. It can

allocate perfect solutions faster than other algorithms, also outperform

the other algorithms in the diversity of the obtained solutions.

75

Chapter 6

Conclusion and Future Work

In this work, a set of Meta-Heuristics algorithms have been used to tackle

NRP. Different quality indicators are used in comparing the results. This

chapter presents a conclusion of the obtained results and highlight the

future work.

6.1 Conclusion

Software development companies usually need to implement a lot of re-

quirements in a limited time; since they can’t implement all requirements

in the next release, they need to choose a subset of requirements to be im-

plemented in the next release [4].

In this problem, the selection of requirements depends on require-

ment value, requirement integrity, and dependencies between require-

ments.

76

In this thesis, A Multi-Objective version of HHO is proposed to tackle

NRP and find the best set of requirements that achieved customer satis-

faction and gain a high profit within the limited development budget.

Different datasets from related NRP literature are used to assess the

proposed approach’s performance. It contains classic and real instances.

On the first hand, classic datasets were generated in labs for experimen-

tal purposes. On the other hand, the realistic datasets were derived from

a real open source project. Both types include requirements cost, require-

ments requested by each customer, and the profit will be gained for im-

plementing customer requirements.

Three of the best meta-heuristics algorithms (NSGA-II, MOCell, and

MOCHC) are used in addition to the proposed algorithm MOHHO to

tackle NRP using different datasets. Each experiment is repeated several

times to avoid randomness in the founded results.

The obtained results showed that MOHHO outperforms NSGA-II,

MOCell, and MOCHC based on comparing Hypervolume quality indi-

cator values. Also, MOHHO has a better learning curve and can reach

promising solutions in a few steps comparing to the other algorithms.

6.2 Future Work

SI algorithms are performed a good reputation in many optimization

problems. It is also can allocate good results in a low number of it-

erations. MOHHO can perform better if it has some enhancements to

avoid stucking in a local-optimal solution. Since most of the algorithms

77

in JMetal belong to the Evolutionary algorithms, we suggest applying

more SI algorithms and make a deep comparison between the perfor-

mance of these two families of Meta Heuristic algorithms. Another room

of enhancement can be applied by tuning the MOHHO algorithm param-

eters. Also, it worth to add more objectives in NRP, execution time can

be considered as a third objective.

78

Bibliography

[1] Abdullah Al Mamun, Fahim Djatmiko, and Mridul Kanti Das. “Bi-

nary multi-objective PSO and GA for adding new features into an

existing product line”. In: 2016 19th International Conference on Com-

puter and Information Technology (ICCIT). IEEE. 2016, pp. 581–585.

[2] Hamidreza Alrezaamiri, Ali Ebrahimnejad, and Homayun Mota-

meni. “Solving the next release problem by means of the fuzzy logic

inference system with respect to the competitive market”. In: Jour-

nal of Experimental & Theoretical Artificial Intelligence (2019), pp. 1–

18.

[3] Allysson Allex Araújo et al. “An architecture based on interactive

optimization and machine learning applied to the next release prob-

lem”. In: Automated Software Engineering 24.3 (2017), pp. 623–671.

[4] Anthony J. Bagnall, Victor J. Rayward-Smith, and Ian M Whittley.

“The next release problem”. In: Information and software technology

43.14 (2001), pp. 883–890.

[5] Paul Baker et al. “Search based approaches to component selec-

tion and prioritization for the next release problem”. In: 2006 22nd

79

IEEE International Conference on Software Maintenance. IEEE. 2006,

pp. 176–185.

[6] James C Bednarz. “Cooperative hunting in Harris’ hawks (Parabu-

teo unicinctus)”. In: Science 239.4847 (1988), p. 1525.

[7] Glauber Botelho et al. “Investigating Bioinspired Strategies to Solve

Large Scale Next Release Problem.” In: CIbSE. 2015, p. 248.

[8] Carlos Casanova et al. “Fuzzy Bi-Objective Particle Swarm Opti-

mization for Next Release Problem”. In: International Conference on

Software Engineering and Knowledge Engineering. 2019, pp. 509–512.

[9] José M Chaves-González and Miguel A Pérez-Toledano. “Differen-

tial evolution with Pareto tournament for the multi-objective next

release problem”. In: Applied Mathematics and Computation 252 (2015),

pp. 1–13.

[10] José M Chaves-González, Miguel A Pérez-Toledano, and Amparo

Navasa. “Teaching learning based optimization with Pareto tour-

nament for the multiobjective software requirements selection”. In:

Engineering Applications of Artificial Intelligence 43 (2015), pp. 89–101.

[11] Carlos A Coello Coello, Gary B Lamont, David A Van Veldhuizen,

et al. Evolutionary algorithms for solving multi-objective problems. Vol. 5.

Springer, 2007.

[12] Jack Cuzick. “A Wilcoxon-type test for trend”. In: Statistics in medicine

4.1 (1985), pp. 87–90.

80

[13] José Del Sagrado, Isabel M Del Águila, and Francisco J Orellana.

“Multi-objective ant colony optimization for requirements selec-

tion”. In: Empirical Software Engineering 20.3 (2015), pp. 577–610.

[14] Miguel Ángel Domınguez-Rıos et al. “Efficient anytime algorithms

to solve the bi-objective Next Release Problem”. In: Journal of Sys-

tems and Software 156 (2019), pp. 217–231.

[15] Juan J Durillo et al. “A study of the bi-objective next release prob-

lem”. In: Empirical Software Engineering 16.1 (2011), pp. 29–60.

[16] Juan J Durillo et al. “A study of the multi-objective next release

problem”. In: 2009 1st International Symposium on Search Based Soft-

ware Engineering. IEEE. 2009, pp. 49–58.

[17] Larry J Eshelman. “The CHC adaptive search algorithm: How to

have safe search when engaging in nontraditional genetic recom-

bination”. In: Foundations of genetic algorithms. Vol. 1. Elsevier, 1991,

pp. 265–283.

[18] Anthony Finkelstein et al. ““Fairness analysis” in requirements as-

signments”. In: 2008 16th IEEE International Requirements Engineer-

ing Conference. IEEE. 2008, pp. 115–124.

[19] Anthony Finkelstein et al. “A search based approach to fairness

analysis in requirement assignments to aid negotiation, mediation

and decision making”. In: Requirements engineering 14.4 (2009), pp. 231–

245.

81

[20] Milton Friedman. “The use of ranks to avoid the assumption of nor-

mality implicit in the analysis of variance”. In: Journal of the ameri-

can statistical association 32.200 (1937), pp. 675–701.

[21] FW Glover and GA Kochenberger. editros. Handbook of metaheuris-

tics. 2003.

[22] Des Greer and Guenther Ruhe. “Software release planning: an evo-

lutionary and iterative approach”. In: Information and software tech-

nology 46.4 (2004), pp. 243–253.

[23] A Hamdy and AA Mohamed. “Greedy Binary Particle Swarm Op-

timization for multi-Objective Constrained Next Release Problem”.

In: International Journal of Machine Learning and Computing 9.5 (2019).

[24] Ali Asghar Heidari et al. “Harris hawks optimization: Algorithm

and applications”. In: Future generation computer systems 97 (2019),

pp. 849–872.

[25] Watts S Humphrey. A discipline for software engineering. Addison-

Wesley Longman Publishing Co., Inc., 1995.

[26] Kashif Hussain, William Zhu, and Mohd Najib Mohd Salleh. “Long-

term memory Harris’ hawk optimization for high dimensional and

optimal power flow problems”. In: IEEE Access 7 (2019), pp. 147596–

147616.

[27] He Jiang et al. “A hybrid ACO algorithm for the next release prob-

lem”. In: The 2nd International Conference on Software Engineering and

Data Mining. IEEE. 2010, pp. 166–171.

82

[28] Joachim Karlsson. “Software requirements prioritizing”. In: Pro-

ceedings of the Second International Conference on Requirements Engi-

neering. IEEE. 1996, pp. 110–116.

[29] A Charan Kumari, K Srinivas, and MP Gupta. “Software require-

ments optimization using multi-objective quantum-inspired hybrid

differential evolution”. In: Evolve-a bridge between probability, set ori-

ented numerics, and evolutionary computation ii. Springer, 2013, pp. 107–

120.

[30] Majdi M Mafarja and Seyedali Mirjalili. “Hybrid whale optimiza-

tion algorithm with simulated annealing for feature selection”. In:

Neurocomputing 260 (2017), pp. 302–312.

[31] Raja Masadeh et al. “Grey Wolf algorithm for requirements priori-

tization”. In: Modern Applied Science 12.2 (2018), p. 54.

[32] Victor JAT de Melo França et al. “Mixed Integer Programming help-

ing Requirements Allocation for the NRP in SCRUM Teams”. In:

Proceedings of the 17th Brazilian Symposium on Software Quality. 2018,

pp. 279–286.

[33] Thiago do Nascimento Ferreira et al. “Incorporating user prefer-

ences in ant colony optimization for the next release problem”. In:

Applied Soft Computing 49 (2016), pp. 1283–1296.

83

[34] Antonio J Nebro, Juan J Durillo, and Matthieu Vergne. “Redesign-

ing the jMetal multi-objective optimization framework”. In: Pro-

ceedings of the companion publication of the 2015 annual conference on

genetic and evolutionary computation. 2015, pp. 1093–1100.

[35] Antonio J Nebro et al. “MOCell: A cellular genetic algorithm for

multiobjective optimization”. In: International Journal of Intelligent

Systems 24.7 (2009), pp. 726–746.

[36] Antonio J Nebro et al. “Optimal antenna placement using a new

multi-objective CHC algorithm”. In: Proceedings of the 9th annual

conference on Genetic and evolutionary computation. 2007, pp. 876–883.

[37] Frauke Paetsch, Armin Eberlein, and Frank Maurer. “Requirements

engineering and agile software development”. In: WET ICE 2003.

Proceedings. Twelfth IEEE International Workshops on Enabling Tech-

nologies: Infrastructure for Collaborative Enterprises, 2003. IEEE. 2003,

pp. 308–313.

[38] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial op-

timization: algorithms and complexity. Courier Corporation, 1998.

[39] Shari Lawrence Pfleeger. “Experimental design and analysis in soft-

ware engineering”. In: Annals of Software Engineering 1.1 (1995), pp. 219–

253.

[40] Poria Pirozmand et al. “A novel approach for the next software re-

lease using a binary artificial algae algorithm”. In: Journal of Intelli-

gent & Fuzzy Systems Preprint (), pp. 1–15.

84

[41] Aurora Ramirez, Jose Raul Romero, and Christopher L Simons.

“A systematic review of interaction in search-based software engi-

neering”. In: IEEE Transactions on Software Engineering 45.8 (2018),

pp. 760–781.

[42] S Salcedo-Sanz. “Modern meta-heuristics based on nonlinear physics

processes: A review of models and design procedures”. In: Physics

Reports 655 (2016), pp. 1–70.

[43] Ken Schwaber and Jeff Sutherland. “The scrum guide”. In: Scrum

Alliance 21 (2011), p. 19.

[44] Rainer Storn and Kenneth Price. “Differential evolution–a simple

and efficient heuristic for global optimization over continuous spaces”.

In: Journal of global optimization 11.4 (1997), pp. 341–359.

[45] Ashish Sureka. “Requirements prioritization and next-release prob-

lem under non-additive value conditions”. In: 2014 23rd Australian

Software Engineering Conference. IEEE. 2014, pp. 120–123.

[46] Jifeng Xuan et al. “Solving the large scale next release problem with

a backbone-based multilevel algorithm”. In: IEEE Transactions on

Software Engineering 38.5 (2012), pp. 1195–1212.

[47] Yusliza Yusoff, Mohd Salihin Ngadiman, and Azlan Mohd Zain.

“Overview of NSGA-II for optimizing machining process parame-

ters”. In: Procedia Engineering 15 (2011), pp. 3978–3983.

85

[48] Carlos Mario Zapata Jaramillo and Fernando Arango Isaza. “The

UNC-method: a problem-based software development method”.

In: Ingenierıa e Investigación 29.1 (2009), pp. 69–75.

[49] Yuanyuan Zhang, Mark Harman, and S Afshin Mansouri. “The

multi-objective next release problem”. In: Proceedings of the 9th an-

nual conference on Genetic and evolutionary computation. 2007, pp. 1129–

1137.

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Problem Statement
	Research Objectives
	Proposal Organization

	Background
	The Next Release Problem
	Metaheuristics algorithms
	Multi Objective Algorithms
	Harris Hawks Optimization
	Exploration phase
	Transition from exploration to exploitation
	Exploitation phase
	Soft besiege
	Hard besiege
	Soft besiege with progressive rapid dives
	Hard besiege with progressive rapid dives

	Pseudocode of HHO

	Related Works
	Research Methodology
	Used Data Sets
	The Proposed Approach
	Convert HHO from Continuous to Discrete
	Cost Fitness Function
	Profit Fitness Function
	Comparing and Contrasting Solutions
	MOHHO Implementation

	Used Algorithms
	NSGA-II
	MOCell
	MOCHC

	Quality of the Solutions Obtained
	Hypervolume
	Statistical Analysis
	Friedman Statistical Analysis
	Wilcoxon Statistical Analysis

	Results
	Experimental Setup
	Experimental Results
	HV Quality Indicator Median
	Friedman Statistical
	Wilcoxon Statistical
	Box Plots
	Convergence Curve

	Conclusion and Future Work
	Conclusion
	Future Work

